MATH 1A - QUIZ 7 - SOLUTIONS

PEYAM RYAN TABRIZIAN

Name: \qquad
(1) (3 points) Use linear approximation or differentials (but not both) to estimate:

$$
\sqrt[3]{7.98}
$$

Is your answer an underestimate or an overestimate? Explain very briefly (roughly 1 sentence) and with the help of a graph.

Linear Approximation:
Let $f(x)=\sqrt[3]{x}=x^{\frac{1}{3}}, a=8$ (because notice $\sqrt[3]{8}$ is easy to evaluate)

Then:

$$
L(x)=f(8)+f^{\prime}(8)(x-8)
$$

But $f(8)=\sqrt[3]{8}=2$

And $f^{\prime}(x)=\frac{1}{3} x^{-\frac{2}{3}}$, and so $f^{\prime}(8)=\frac{1}{3} \frac{1}{(\sqrt[3]{8})^{2}}=\frac{1}{12}$.
Therefore:

$$
L(x)=2+\frac{1}{12}(x-8)
$$

And so:
$\sqrt[3]{7.98}=f(7.98) \approx L(7.98)=2+\frac{1}{12}(7.98-8)=2+\frac{-0.02}{12}=2-\frac{0.01}{6}=2-\frac{1}{600} \approx 1.998333 \cdots$

Differentials:
Here $d x=7.98-8=-0.02$, and:
$d y=\left(\frac{d y}{d x}\right) d x=\frac{1}{3} \frac{1}{(\sqrt[3]{8})^{2}} \times(-0.02)=\frac{1}{12} \times(-0.02)=-\frac{1}{600}$
Hence:

[^0]$$
\sqrt[3]{7.98}=f(7.98)=f(8)+d y=2-\frac{1}{600} \approx 1.998333 \cdots
$$

Under/Overestimate:
This is an overestimate because near 8 , the tangent line of f at 8 is above the graph of f :

> 1A/Math 1A - Fall 2013/Quizzes/Quiz 7.png

(The picture has been exaggerated a bit for you to see the distinction between $L(7.98)$ and $f(7.98)$)

(2) (1 point) TRUE/FALSE

(a) FALSE $\ln \left(P e^{y a m}\right)=P y a m$, where P, a, m are constants

$$
\ln \left(P e^{y a m}\right)=\ln (P)+\ln \left(e^{y a m}\right)=\ln (P)+y a m \neq P y a m
$$

(b) FALSE $\frac{d}{d x} 10^{x}=x 10^{x-1}$

$$
\frac{d}{d x} 10^{x}=\ln (10) 10^{x}
$$

(c) FALSE $\frac{d}{d x} \ln (10)=\frac{1}{10}$ $\ln (10)$ is a CONSTANT, so you get 0 .
(3) (3 points) The angle of elevation of the sun (that is, the angle between the sun and the floor) is decreasing at a rate of $\frac{1}{4} \mathrm{rad} / \mathrm{h}$. How fast is the shadow cast by a 400 ft -tall building increasing/decreasing when that angle of elevation is $\frac{\pi}{6}$?
(1) Picture:

1A/Math 1A - Fall 2013/Quizzes/Quiz 7 Triangle.png

(2) We want to find $\frac{d x}{d t}$ when $\theta=\frac{\pi}{6}$
(3) $\tan (\theta)=\frac{400}{x}$
(4) Differentiating: $\sec ^{2}(\theta) \frac{d \theta}{d t}=-\frac{400}{x^{2}} \frac{d x}{d t}$
(5) We know that $\frac{d \theta}{d t}=-0.25$ (because θ is decreasing), and $\theta=\frac{\pi}{6}$, so:

$$
\sec ^{2}(\theta)=\frac{1}{\cos ^{2}(\theta)}=\frac{1}{\cos ^{2}\left(\frac{\pi}{6}\right)}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}=\frac{4}{3}
$$

Finally, to figure out x, use the same equation as in (2), but plug in $\theta=\frac{\pi}{6}$:

$$
\begin{aligned}
\tan \left(\frac{\pi}{6}\right) & =\frac{400}{x} \\
\frac{\sin \left(\frac{\pi}{6}\right)}{\cos \left(\frac{\pi}{6}\right)} & =\frac{400}{x} \\
\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} & =\frac{400}{x} \\
\frac{1}{\sqrt{3}} & =\frac{400}{x} \\
x & =400 \sqrt{3}
\end{aligned}
$$

Therefore, we get:

$$
\begin{aligned}
\sec ^{2}(\theta) \frac{d \theta}{d t} & =-\frac{400}{x^{2}} \frac{d x}{d t} \\
\frac{4}{3}(-0.25) & =-\frac{400}{(400)^{2} \times 3} \frac{d x}{d t} \\
-\frac{1}{3} & =-\frac{1}{1200} \frac{d x}{d t} \\
\frac{d x}{d t} & =400
\end{aligned}
$$

(6) So x is increasing at a rate of $400 \mathrm{ft} / \mathrm{h}$.
(4) (3 points) Show that:

$$
-\sqrt{2} \leq \cos (x)+\sin (x) \leq \sqrt{2}
$$

Let $f(x)=\cos (x)+\sin (x)$. It is enough to show that the absolute max of f is $\sqrt{2}$ and the absolute min of f is $-\sqrt{2}$. Moreover, notice that f is periodic of period 2π, so we only need to focus on the interval $[0,2 \pi]$.
(1) Endpoints: $f(0)=1+0=1, f(2 \pi)=1$
(2) Critical numbers:

$$
f^{\prime}(x)=-\sin (x)+\cos (x)=0 \Longrightarrow \sin (x)=\cos (x) \Longrightarrow \frac{\sin (x)}{\cos (x)}=\frac{\cos (x)}{\cos (x)} \Longrightarrow \tan (x)=1
$$

And so $x=\frac{\pi}{4}, \frac{5 \pi}{4}$ (either draw a graph of tan or the trigonometric circle for that).

Now:

$$
\begin{gathered}
f\left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}=\sqrt{2} \\
f\left(\frac{5 \pi}{4}\right)=\cos \left(\frac{5 \pi}{4}\right)+\sin \left(\frac{5 \pi}{4}\right)=\frac{-\sqrt{2}}{2}+\frac{-\sqrt{2}}{2}=-\sqrt{2}
\end{gathered}
$$

(3) Comparing:

$$
f(0)=1, f(2 \pi)=1, f\left(\frac{\pi}{4}\right)=\sqrt{2}, f\left(\frac{5 \pi}{4}\right)=-\sqrt{2} \text {, hence: }
$$

Absolute maximum: $f\left(\frac{\pi}{4}+2 \pi m\right)=\sqrt{2}(m$ is an integer $)$
Absolute minimum: $f\left(\frac{5 \pi}{4}+2 \pi m\right)=-\sqrt{2}(m$ is an integer $)$

And we're done!

[^0]: Date: Friday, October 25th, 2013.

